Assignment 13.

This homework is due *Thursday*, December 10.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much. Extra problems is due December 5.

1. Quick reminder

A. A measure space is a triple (X, \mathcal{M}, μ) , where X is a set, \mathcal{M} is a σ -algebra of subsets of X, and $\mu : \mathcal{M} \to [0, \infty]$ is a function, called measure, with the following properties: $\mu(\emptyset) = 0$, $\mu(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k)$ whenever $\{E_k\}_{k=1}^{\infty}$ is a disjoint collection of sets in \mathcal{M} .

For a set X, a function $\mu^*: 2^X \to [0,\infty]$ is called an *outer measure* on X if $\mu^*(\emptyset) = 0$ and μ^* is countable monotone, i.e. $\mu(E) \leq \sum_{k=1}^{\infty} \mu(E_k)$ whenever $E \subseteq \bigcup_{k=1}^{\infty} E_k$.

B. Given any outer measure μ^* , we say that a set $E \subseteq X$ is measurable w.r.t. μ^* if $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^C)$ for every $A \subseteq X$.

One can show that sets measurable w.r.t. μ^* form a σ -algebra \mathcal{M} . One can show that the restriction $\bar{\mu}$ of μ^* to \mathcal{M} is a measure.

C. For any $S \subseteq 2^X$, given any set function $\mu: S \to [0, \infty]$, one can define a function $\mu^*: 2^X \to [0, \infty]$ as follows:

$$\mu^*(E) = \inf \left\{ \sum \mu(E_k) \mid E_k \in S, E \subseteq \bigcup E_k \right\}.$$

One can prove that such μ^* is an outer measure, called the *outer measure induced* by μ .

D. Thus, given any set function $\mu: S \to [0, \infty]$ on any $S \subseteq 2^X$, one can construct the outer measure μ^* induced by μ (see **C**) and then define measurable sets and the measure $\bar{\mu}$ (see **B**). The latter is called the *Carathéodory measure induced by* μ .

$$\mu: S \to [0,\infty]$$
 \longrightarrow $\mu^*: 2^X \to [0,\infty]$ \longrightarrow $\bar{\mu}: \mathcal{M} \to [0,\infty]$

Note that without imposing additional requirements on S and μ there is no guarantee that $\bar{\mu}$ extends μ . That is, there is no guarantee that the sets in S will turn out to be measurable, nor, if $E \in S$ happens to be measurable, that $\bar{\mu}(E) = \mu(E)$.

2. Exercises

- (1) (Prop. 17.1.1) Let (X, \mathcal{M}, μ) be a measure space. Prove that μ has the following properties.
 - (a) (Finite Additivity) For any finite disjoint collection E_1, \ldots, E_n of measurable sets,

$$\mu\left(\bigcup_{k=1}^{n} E_k\right) = \sum_{k=1}^{n} \mu(E_k).$$

- (b) (Monotonicity) If $A \subseteq B$ are measurable sets then $\mu(A) \leq \mu(B)$.
- (c) (Excision) If additionally $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.
- (d) (Countable Monotonicity) For any countable collection $\{E_k\}_{k=1}^{\infty}$ of measurable sets that covers a measurable set E,

$$\mu(E) \le \sum_{k=1}^{\infty} \mu(E_k).$$

— see next page —

1

- (2) (17.1.7i) Prove that if (X, \mathcal{M}) is a measurable space and μ, ν are measures on \mathcal{M} , then $\mu + \nu$ defined by $(\mu + \nu)(E) = \mu(E) + \nu(E)$ is also a measure on \mathcal{M} .
- (3) (17.4.19) Let μ^* be an outer measure on X. Show that if $\mu^*(E) = 0$ for some $E \subseteq X$, then E is measurable w.r.t μ^* , every subset $E' \subseteq E$ is measurable w.r.t μ^* , and $\mu^*(E') = 0$.
- (4) (17.4.22) On the collection $S = \{\emptyset, [1,2]\}$ of subsets of \mathbb{R} , define the set function $\mu: S \to [0,\infty]$ as follows: $\mu(\emptyset) = 0, \mu([1,2]) = 1$. Determine the outer measure μ^* induced by μ and the σ -algebra of measurable sets.
- (5) (17.4.23) On the collection S of all subsets of \mathbb{R} , define the set function $\mu:S\to [0,\infty]$ by setting $\mu(A)$ to be the number of integer points in A. Determine the outer measure μ^* induced by μ and the σ -algebra of measurable sets.
- (6) (17.5.26) Consider the collection $S = \{\emptyset, [0, 1], [0, 3], [2, 3]\}$ of subsets of \mathbb{R} and define $\mu(\emptyset) = 0, \mu([0, 1]) = 1, \mu([0, 3]) = 1, \mu([2, 3]) = 1$. Show that $\mu : S \to [0, \infty]$ is a finitely additive. Can μ be extended to a measure? What are the subsets of \mathbb{R} that are measurable with respect to the outer measure μ^* induced by μ ?
- (7) (17.5.27) Let S be a collection of subsets of a set X and $\mu: S \to [0, \infty]$ a set function. Show that μ is countably monotone if and only if μ^* is an extension of μ (i.e. $\mu^*(A) = \mu(A)$ for every $A \in S$.)